Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Transl Med ; 21(1): 459, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434186

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked, incurable, degenerative neuromuscular disease that is exacerbated by secondary inflammation. N6-methyladenosine (m6A), the most common base modification of RNA, has pleiotropic immunomodulatory effects in many diseases. However, the role of m6A modification in the immune microenvironment of DMD remains elusive. METHODS: Our study retrospectively analyzed the expression data of 56 muscle tissues from DMD patients and 26 from non-muscular dystrophy individuals. Based on single sample gene set enrichment analysis, immune cells infiltration was identified and the result was validated by flow cytometry analysis and immunohistochemical staining. Then, we described the features of genetic variation in 26 m6A regulators and explored their relationship with the immune mircoenvironment of DMD patients through a series of bioinformatical analysis. At last, we determined subtypes of DMD patients by unsupervised clustering analysis and characterized the molecular and immune characteristics in different subgroups. RESULTS: DMD patients have a sophisticated immune microenvironment that is significantly different from non-DMD controls. Numerous m6A regulators were aberrantly expressed in the muscle tissues of DMD and inversely related to most muscle-infiltrating immune cell types and immune response-related signaling pathways. A diagnostic model involving seven m6A regulators was established using LASSO. Furthermore, we determined three m6A modification patterns (cluster A/B/C) with distinct immune microenvironmental characteristics. CONCLUSION: In summary, our study demonstrated that m6A regulators are intimately linked to the immune microenvironment of muscle tissues in DMD. These findings may facilitate a better understanding of the immunomodulatory mechanisms in DMD and provide novel strategies for the treatment.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Análise por Conglomerados , Citometria de Fluxo , Imunomodulação , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Estudos Retrospectivos
3.
Nat Commun ; 13(1): 879, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169163

RESUMO

Dysregulation of the balance between pro-inflammatory and anti-inflammatory macrophages has a key function in the pathogenesis of Duchenne muscular dystrophy (DMD), a fatal genetic disease. We postulate that an evolutionarily ancient protective mechanism against infection, known as trained immunity, drives pathological inflammation in DMD. Here we show that bone marrow-derived macrophages from a murine model of DMD (mdx) exhibit cardinal features of trained immunity, consisting of transcriptional hyperresponsiveness associated with metabolic and epigenetic remodeling. The hyperresponsive phenotype is transmissible by bone marrow transplantation to previously healthy mice and persists for up to 11 weeks post-transplant. Mechanistically, training is induced by muscle extract in vitro. The functional and epigenetic changes in bone marrow-derived macrophages from dystrophic mice are TLR4-dependent. Adoptive transfer experiments further support the TLR4-dependence of trained macrophages homing to damaged muscles from the bone marrow. Collectively, this suggests that a TLR4-regulated, memory-like capacity of innate immunity induced at the level of the bone marrow promotes dysregulated inflammation in DMD.


Assuntos
Transplante de Medula Óssea , Imunidade Inata/imunologia , Macrófagos/imunologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Receptor 4 Toll-Like/imunologia , Animais , Células da Medula Óssea/imunologia , Linhagem Celular , Modelos Animais de Doenças , Inflamação/imunologia , Células L , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/imunologia , Distrofia Muscular de Duchenne/imunologia , Extratos de Tecidos/farmacologia , Transcrição Gênica/genética
4.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163475

RESUMO

Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.


Assuntos
Vesículas Extracelulares/virologia , Distrofia Muscular de Duchenne/terapia , Células Satélites de Músculo Esquelético/metabolismo , Esfingomielina Fosfodiesterase/genética , Animais , Ácidos Nucleicos Livres/genética , Dependovirus/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/transplante , Terapia Genética , Vetores Genéticos , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Transdução Genética
5.
Am J Physiol Cell Physiol ; 322(3): C354-C369, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044859

RESUMO

Suppressing mineralocorticoid receptor (MR) activity with MR antagonists is therapeutic for chronic skeletal muscle pathology in Duchenne muscular dystrophy (DMD) mouse models. Although mechanisms underlying clinical MR antagonist efficacy for DMD cardiomyopathy and other cardiac diseases are defined, mechanisms in skeletal muscles are not fully elucidated. Myofiber MR knockout improves skeletal muscle force and a subset of dystrophic pathology. However, MR signaling in myeloid cells is known to be a major contributor to cardiac efficacy. To define contributions of myeloid MR in skeletal muscle function and disease, we performed parallel assessments of muscle pathology, cytokine levels, and myeloid cell populations resulting from myeloid MR genetic knockout in muscular dystrophy and acute muscle injury. Myeloid MR knockout led to lower levels of C-C motif chemokine receptor 2 (CCR2)-expressing macrophages, resulting in sustained myofiber damage after acute injury of normal muscle. In acute injury, myeloid MR knockout also led to increased local muscle levels of the enzyme that produces the endogenous MR agonist aldosterone, further supporting important contributions of MR signaling in normal muscle repair. In muscular dystrophy, myeloid MR knockout altered cytokine levels differentially between quadriceps and diaphragm muscles, which contain different myeloid populations. Myeloid MR knockout led to higher levels of fibrosis in dystrophic diaphragm. These results support important contributions of myeloid MR signaling to skeletal muscle repair in acute and chronic injuries and highlight the useful information gained from cell-specific genetic knockouts to delineate mechanisms of pharmacological efficacy.


Assuntos
Diafragma/metabolismo , Macrófagos/metabolismo , Doenças Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Músculo Quadríceps/metabolismo , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Animais , Compostos de Bário , Cloretos , Citocinas/genética , Citocinas/metabolismo , Diafragma/imunologia , Diafragma/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos mdx , Camundongos Knockout , Doenças Musculares/induzido quimicamente , Doenças Musculares/imunologia , Doenças Musculares/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , Músculo Quadríceps/imunologia , Músculo Quadríceps/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Mineralocorticoides/genética , Transdução de Sinais
6.
Nat Commun ; 12(1): 6769, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819506

RESUMO

Adeno-associated virus (AAV)-mediated CRISPR-Cas9 editing holds promise to treat many diseases. The immune response to bacterial-derived Cas9 has been speculated as a hurdle for AAV-CRISPR therapy. However, immunological consequences of AAV-mediated Cas9 expression have thus far not been thoroughly investigated in large mammals. We evaluate Cas9-specific immune responses in canine models of Duchenne muscular dystrophy (DMD) following intramuscular and intravenous AAV-CRISPR therapy. Treatment results initially in robust dystrophin restoration in affected dogs but also induces muscle inflammation, and Cas9-specific humoral and cytotoxic T-lymphocyte (CTL) responses that are not prevented by the muscle-specific promoter and transient prednisolone immune suppression. In normal dogs, AAV-mediated Cas9 expression induces similar, though milder, immune responses. In contrast, other therapeutic (micro-dystrophin and SERCA2a) and reporter (alkaline phosphatase, AP) vectors result in persistent expression without inducing muscle inflammation. Our results suggest Cas9 immunity may represent a critical barrier for AAV-CRISPR therapy in large mammals.


Assuntos
Sistemas CRISPR-Cas/imunologia , Terapia Genética/efeitos adversos , Vetores Genéticos/imunologia , Músculo Esquelético/imunologia , Distrofia Muscular de Duchenne/terapia , Animais , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animais de Doenças , Cães , Distrofina/genética , Distrofina/imunologia , Edição de Genes/métodos , Genes Reporter/genética , Genes Reporter/imunologia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia
7.
J Neuromuscul Dis ; 8(5): 815-825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366365

RESUMO

BACKGROUND: Duchenne Muscular Dystrophy (DMD) is one of the most common muscular dystrophies, caused by mutated forms of the dystrophin gene. Currently, the only treatment available is symptoms management. Novel approximations are trying to treat these patients with gene therapy, namely, using viral vectors. However, these vectors can be recognized by the immune system decreasing their therapeutic activity and making impossible a multidose treatment due to the induction of the humoral immunity following the first dose. OBJECTIVE: Our objective is to demonstrate the feasibility of using a hybrid vector to avoid immune clearance, based on the electrostatic coating of adeno-associated virus (AAVs) vectors with our proprietary polymers. METHODS: We coated model adeno-associated virus vectors by electrostatic interaction of our cationic poly (beta aminoester) polymers with the viral anionic capsid and characterized biophysical properties. Once the nanoformulations were designed, we studied their in vivo biodistribution by bioluminescence analysis and we finally studied the capacity of the polymers as potential coatings to avoid antibody neutralization. RESULTS: We tested two polymer combinations and we demonstrated the need for poly(ethylene glycol) addition to avoid vector aggregation after coating. In vivo biodistribution studies demonstrated that viral particles are located in the liver (short times) and also in muscles (long times), the target organ. However, we did not achieve complete antibody neutralization shielding using this electrostatic coating. CONCLUSIONS: The null hypothesis stands: although it is feasible to coat viral particles by electrostatic interaction with a proprietary polymer, this strategy is not appropriate for AAVs due to their small size, so other alternatives are required as a novel treatment for DMD patients.


Assuntos
Terapia Genética/métodos , Distrofia Muscular de Duchenne/imunologia , Eletricidade Estática , Vírion/imunologia , Animais , Dependovirus/imunologia , Distrofina/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Distribuição Tecidual
8.
Am J Pathol ; 191(8): 1474-1486, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34294193

RESUMO

Humans cannot synthesize the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) because of an inactivating deletion in the cytidine-5'-monophospho-(CMP)-N-acetylneuraminic acid hydroxylase (CMAH) gene responsible for its synthesis. Human Neu5Gc deficiency can lead to development of anti-Neu5Gc serum antibodies, the levels of which can be affected by Neu5Gc-containing diets and by disease. Metabolic incorporation of dietary Neu5Gc into human tissues in the face of circulating antibodies against Neu5Gc-bearing glycans is thought to exacerbate inflammation-driven diseases like cancer and atherosclerosis. Probing of sera with sialoglycan arrays indicated that patients with Duchenne muscular dystrophy (DMD) had a threefold increase in overall anti-Neu5Gc antibody titer compared with age-matched controls. These antibodies recognized a broad spectrum of Neu5Gc-containing glycans. Human-like inactivation of the Cmah gene in mice is known to modulate severity in a variety of mouse models of human disease, including the X chromosome-linked muscular dystrophy (mdx) model for DMD. Cmah-/-mdx mice can be induced to develop anti-Neu5Gc-glycan antibodies as humans do. The presence of anti-Neu5Gc antibodies, in concert with induced Neu5Gc expression, correlated with increased severity of disease pathology in Cmah-/-mdx mice, including increased muscle fibrosis, expression of inflammatory markers in the heart, and decreased survival. These studies suggest that patients with DMD who harbor anti-Neu5Gc serum antibodies might exacerbate disease severity when they ingest Neu5Gc-rich foods, like red meats.


Assuntos
Autoanticorpos/sangue , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , Ácidos Neuramínicos/sangue , Ácidos Neuramínicos/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Criança , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/sangue
9.
Cell Rep ; 35(2): 108997, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852849

RESUMO

Despite the well-accepted view that chronic inflammation contributes to the pathogenesis of Duchenne muscular dystrophy (DMD), the function and regulation of eosinophils remain an unclear facet of type II innate immunity in dystrophic muscle. We report the observation that group 2 innate lymphoid cells (ILC2s) are present in skeletal muscle and are the principal regulators of muscle eosinophils during muscular dystrophy. Eosinophils were elevated in DMD patients and dystrophic mice along with interleukin (IL)-5, a major eosinophil survival factor that was predominantly expressed by muscle ILC2s. We also find that IL-33 was upregulated in dystrophic muscle and was predominantly produced by fibrogenic/adipogenic progenitors (FAPs). Exogenous IL-33 and IL-2 complex (IL-2c) expanded muscle ILC2s and eosinophils, decreased the cross-sectional area (CSA) of regenerating myofibers, and increased the expression of genes associated with muscle fibrosis. The deletion of ILC2s in dystrophic mice mitigated muscle eosinophilia and impaired the induction of IL-5 and fibrosis-associated genes. Our findings highlight a FAP/ILC2/eosinophil axis that promotes type II innate immunity, which influences the balance between regenerative and fibrotic responses during muscular dystrophy.


Assuntos
Eosinófilos/imunologia , Fibroblastos/imunologia , Interleucina-5/imunologia , Linfócitos/imunologia , Células-Tronco Mesenquimais/imunologia , Distrofia Muscular de Duchenne/imunologia , Animais , Proliferação de Células , Quimiocinas CC/genética , Quimiocinas CC/imunologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-2/imunologia , Interleucina-2/farmacologia , Interleucina-33/imunologia , Interleucina-33/farmacologia , Interleucina-5/genética , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia
10.
Aging (Albany NY) ; 12(24): 24853-24871, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361519

RESUMO

Duchenne Muscular Dystrophy (DMD) patients often suffer from both muscle wasting and osteoporosis. Our previous studies have revealed reduced regeneration potential in skeletal muscle and bone, concomitant with ectopic calcification of soft tissues in double knockout (dKO, dystrophin-/-; utrophin-/-) mice, a severe murine model for DMD. We found significant involvement of RhoA/ROCK (Rho-Associated Protein Kinase) signaling in mediating ectopic calcification of muscles in dKO mice. However, the cellular identity of these RhoA+ cells, and the role that RhoA plays in the chronic inflammation-associated pathologies has not been elucidated. Here, we report that CD68+ macrophages are highly prevalent at the sites of ectopic calcification of dKO mice, and that these macrophages highly express RhoA. Macrophages from dKO mice feature a shift towards a more pro-inflammatory M1 polarization and an increased expression of various senescence-associated secretory phenotype (SASP) factors that was reduced with the RhoA/ROCK inhibitor Y-27632. Further, systemic inhibition of RhoA activity in dKO mice led to reduced number of RhoA+/CD68+ cells, as well as a reduction in fibrosis and ectopic calcification. Together, these data revealed that RhoA signaling may be a key regulator of imbalanced mineralization in the dystrophic musculoskeletal system and consequently a therapeutic target for the treatment of DMD or other related muscle dystrophies.


Assuntos
Calcinose/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Miocárdio/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Calcinose/imunologia , Calcinose/patologia , Senescência Celular/genética , Senescência Celular/imunologia , Modelos Animais de Doenças , Distrofina/genética , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miocárdio/imunologia , Miocárdio/patologia , Utrofina/genética , Quinases Associadas a rho/imunologia , Proteína rhoA de Ligação ao GTP/imunologia
11.
J Manag Care Spec Pharm ; 26(4): 361-366, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32223597

RESUMO

DISCLOSURES: Funding for this summary was contributed by Arnold Ventures, Commonwealth Fund, California Health Care Foundation, National Institute for Health Care Management (NIHCM), New England States Consortium Systems Organization, Blue Cross Blue Shield of Massachusetts, Harvard Pilgrim Health Care, Kaiser Foundation Health Plan, and Partners HealthCare to the Institute for Clinical and Economic Review (ICER), an independent organization that evaluates the evidence on the value of health care interventions. ICER's annual policy summit is supported by dues from Aetna, America's Health Insurance Plans, Anthem, Allergan, Alnylam, AstraZeneca, Biogen, Blue Shield of CA, Cambia Health Services, CVS, Editas, Express Scripts, Genentech/Roche, GlaxoSmithKline, Harvard Pilgrim, Health Care Service Corporation, Health Partners, Johnson & Johnson (Janssen), Kaiser Permanente, LEO Pharma, Mallinckrodt, Merck, Novartis, National Pharmaceutical Council, Premera, Prime Therapeutics, Regeneron, Sanofi, Spark Therapeutics, and United Healthcare. Agboola, Fluetsch, Rind, and Pearson are employed by ICER. Lin reports support from ICER during work on this economic model and grants from Mount Zion Health Fund, National Institutes of Health (National Cancer Institute and National Heart, Lung, and Blood Institute), and the Tobacco-Related Diseases Research Program, unrelated to this work. Walton reports support from ICER for work on this economic model and unrelated consulting fees from Baxter.


Assuntos
Distrofina/genética , Imunossupressores/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Pregnenodionas/uso terapêutico , Análise Custo-Benefício , Éxons/efeitos dos fármacos , Éxons/genética , Humanos , Imunossupressores/economia , Modelos Econômicos , Morfolinos/economia , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Distrofia Muscular de Duchenne/economia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Oligonucleotídeos/economia , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/economia , Oligonucleotídeos Antissenso/farmacologia , Prednisona/economia , Prednisona/uso terapêutico , Pregnenodionas/economia , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
12.
Am J Pathol ; 190(1): 190-205, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726040

RESUMO

Duchenne muscular dystrophy (DMD) causes severe disability and death of young men because of progressive muscle degeneration aggravated by sterile inflammation. DMD is also associated with cognitive and bone-function impairments. This complex phenotype results from the cumulative loss of a spectrum of dystrophin isoforms expressed from the largest human gene. Although there is evidence for the loss of shorter isoforms having impact in the central nervous system, their role in muscle is unclear. We found that at 8 weeks, the active phase of pathology in dystrophic mice, dystrophin-null mice (mdxßgeo) presented with a mildly exacerbated phenotype but without an earlier onset, increased serum creatine kinase levels, or decreased muscle strength. However, at 12 months, mdxßgeo diaphragm strength was lower, whereas fibrosis increased, compared with mdx. The most striking features of the dystrophin-null phenotype were increased ectopic myofiber calcification and altered macrophage infiltration patterns, particularly the close association of macrophages with calcified fibers. Ectopic calcification had the same temporal pattern of presentation and resolution in mdxßgeo and mdx muscles, despite significant intensity differences across muscle groups. Comparison of the rare dystrophin-null patients against those with mutations affecting full-length dystrophins may provide mechanistic insights for developing more effective treatments for DMD.


Assuntos
Calcinose/patologia , Distrofina/metabolismo , Fibrose/patologia , Macrófagos/imunologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia , Calcificação Vascular/patologia , Animais , Calcinose/imunologia , Calcinose/metabolismo , Distrofina/genética , Fibrose/imunologia , Fibrose/metabolismo , Inflamação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo , Calcificação Vascular/imunologia , Calcificação Vascular/metabolismo
13.
Hum Mol Genet ; 29(3): 353-368, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696230

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal muscle wasting disorder caused by mutations in the DMD gene that leads to the absence or severe reduction of dystrophin protein in muscle. The mdx mouse, also dystrophin deficient, is the model most widely used to study the pathology and test potential therapies, but the phenotype is milder than human DMD. This limits the magnitude and range of histological damage parameters and molecular changes that can be measured in pre-clinical drug testing. We used 3 weeks of voluntary wheel running to exacerbate the mdx phenotype. In mdx mice, voluntary exercise increased the amount of damaged necrotic tissue and macrophage infiltration. Global gene expression profiling revealed that exercise induced additional and larger gene expression changes in mdx mice and the pathways most impacted by exercise were all related to immune function or cell-extracellular matrix (ECM) interactions. When we compared the matrisome and inflammation genes that were dysregulated in mdx with those commonly differentially expressed in DMD, we found the exercised mdx molecular signature more closely resembled that of DMD. These gene expression changes in the exercised mdx model thus provide more scope to assess the effects of pre-clinical treatments. Our gene profiling comparisons also highlighted upregulation of ECM proteins involved in innate immunity pathways, proteases that can release them, downstream receptors and signaling molecules in exercised mdx and DMD, suggesting that the ECM could be a major source of pro-inflammatory molecules that trigger and maintain the immune response in dystrophic muscle.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Imunidade/imunologia , Inflamação/patologia , Atividade Motora , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Proteínas da Matriz Extracelular/genética , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo
14.
Genes (Basel) ; 10(11)2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752120

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease with X-linked recessive inheritance, that leads patients to premature death. The loss of dystrophin determines membrane instability, causing cell damage and inflammatory response. Macrophage migration inhibitory factor (MIF) is a cytokine that exerts pleiotropic properties and is implicated in the pathogenesis of a variety of diseases. Recently, converging data from independent studies have pointed to a possible role of MIF in dystrophic muscle disorders, including DMD. In the present study, we have investigated the modulation of MIF and MIF-related genes in degenerative muscle disorders, by making use of publicly available whole-genome expression datasets. We show here a significant enrichment of MIF and related genes in muscle samples from DMD patients, as well as from patients suffering from Becker's disease and limb-girdle muscular dystrophy type 2B. On the other hand, transcriptomic analysis of in vitro differentiated myotubes from healthy controls and DMD patients revealed no significant alteration in the expression levels of MIF-related genes. Finally, by analyzing DMD samples as a time series, we show that the modulation of the genes belonging to the MIF network is an early event in the DMD muscle and does not change with the increasing age of the patients, Overall, our analysis suggests that MIF may play a role in vivo during muscle degeneration, likely promoting inflammation and local microenvironment reaction.


Assuntos
Redes Reguladoras de Genes/imunologia , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Distrofia Muscular de Duchenne/imunologia , Transdução de Sinais/genética , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/imunologia , Fibras Musculares Esqueléticas/imunologia , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/imunologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Miotonia Congênita/genética , Miotonia Congênita/imunologia , Miotonia Congênita/patologia , Transdução de Sinais/imunologia
15.
Front Immunol ; 10: 2131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552055

RESUMO

Corticosteroids (CS) are standard therapy for the treatment of Duchenne's muscular dystrophy (DMD). Even though they decrease inflammation, they have limited efficacy and are associated with significant side effects. There is therefore the need for new protolerogenic treatments to replace CS. Dystrophin-deficient rats (Dmdmdx ) closely resemble the pathological phenotype of DMD patients. We performed the first Immunophenotyping of Dmdmdx rats and showed leukocyte infiltration in skeletal and cardiac muscles, which consisted mostly of macrophages and T cells including CD45RChigh T cells. Muscles of DMD patients also contain elevated CD45RChigh T cells. We treated Dmdmdx rats with an anti-CD45RC MAb used in previous studies to deplete CD45RChigh T cells and induce immune tolerance in models of organ transplantation. Treatment of young Dmdmdx rats with anti-CD45RC MAb corrected skeletal muscle strength and was associated with depletion of CD45RChigh T cells with no side effects. Treatment of young Dmdmdx rats with prednisolone resulted in increase in skeletal muscle strength but also severe growth retardation. In conclusion, anti-CD45RC MAb treatment has potential in the treatment of DMD and might eventually result in reduction or elimination of CS use.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos Comuns de Leucócito/antagonistas & inibidores , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Imunofenotipagem , Antígenos Comuns de Leucócito/imunologia , Macrófagos/imunologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/imunologia , Distrofia Muscular de Duchenne/imunologia , Ratos , Baço/citologia , Baço/imunologia , Linfócitos T/imunologia
16.
Neuromuscul Disord ; 29(7): 487-496, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31326192

RESUMO

Female carriers of DMD gene mutations may be symptomatic and show variable skeletal as well as cardiac muscle symptoms. Skeletal muscle can exhibit morphological alterations. However, inflammatory, degenerative and fibrotic changes as seen in Duchenne boys have not been specifically analysed yet, so we addressed the question whether skeletal muscle of female carriers show such alterations. Thirteen carriers with an age range of 3 to 50 years were studied retrospectively. Five out of 13 women had clinically affected relatives. Clinically, most women showed mild muscle weakness, while the CK levels were increased in nine of them. Histomorphological analyses highlighted the typical mosaic pattern of dystrophin-positive and -negative fibres. Regenerating fibres were diffusely scattered and focally pronounced, while endo- and perimysial fibrosis was a variable but constant feature. Infiltration of CD206+TGFß+ macrophages and scattered T cells was noted in the endomysium. TGFb and CCL18, were significantly increased. However, gene expression of markers involved in Th1/Th2 immunity did not reach statistical significance compared to non-diseased controls. In summary, skeletal muscle of clinically manifest female DMD gene mutation carriers shows mild fibrosis and increased regeneration associated with endomysial CD206+TGFß+ and STAT6+ macrophages, which are most likely involved in fibrotic remodelling.


Assuntos
Heterozigoto , Inflamação/genética , Inflamação/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Creatina Quinase/metabolismo , Distrofina/metabolismo , Feminino , Fibrose , Humanos , Macrófagos/patologia , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Distrofia Muscular de Duchenne/imunologia , Regeneração , Estudos Retrospectivos , Linfócitos T/patologia , Adulto Jovem
17.
Pediatr Res ; 86(2): 188-194, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31091530

RESUMO

BACKGROUND: A growing body of evidence defines inflammation as a hallmark feature of disease pathogenesis of Duchenne muscular dystrophy. To tailor potential immune modulatory interventions, a better understanding of immune dysregulation in Duchenne muscular dystrophy is needed. We now asked whether dystrophin deficiency affects the cascade of leukocyte recruitment. METHODS: We performed intravital microscopy on the cremaster muscle of wild-type and dystrophin-deficient mdx mice. Recruitment was triggered by preparation alone (traumatic inflammation) or in combination with scrotal TNFα injections. Neutrophilic infiltration of the cremaster muscle was assessed on tissue sections. Integrin expression on circulating neutrophils and serum levels of pro-inflammatory cytokines were measured by flow cytometry. RESULTS: Mdx mice show increased rolling and adhesion at baseline (traumatic inflammation) and a more profound response upon TNFα injection compared with wild-type animals. In both models, neutrophilic infiltration of the cremaster muscle is increased. Upregulation of the integrins LFA-1 and Mac-1 on circulating leukocytes and pro-inflammatory cytokines IL-6 and CCL2 in the serum points toward systemically altered immune regulation in mdx mice. CONCLUSION: We are the first to show exaggerated activation of the leukocyte recruitment cascade in a dystrophin-deficient organism in vivo.


Assuntos
Distrofina/deficiência , Migração e Rolagem de Leucócitos , Leucócitos/citologia , Distrofia Muscular de Duchenne/imunologia , Músculos Abdominais/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Distrofina/metabolismo , Citometria de Fluxo , Inflamação , Integrinas/metabolismo , Microscopia Intravital , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Neutrófilos/metabolismo , Escroto/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
J Immunol ; 203(2): 476-484, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31142604

RESUMO

Eosinophils are present in muscle lesions associated with Duchenne muscular dystrophy and dystrophin-deficient mdx mice that phenocopy this disorder. Although it has been hypothesized that eosinophils promote characteristic inflammatory muscle damage, this has not been fully examined. In this study, we generated mice with the dystrophin mutation introduced into PHIL, a strain with a transgene that directs lineage-specific eosinophil ablation. We also explored the impact of eosinophil overabundance on dystrophinopathy by introducing the dystrophin mutation into IL-5 transgenic mice. We evaluated the degree of eosinophil infiltration in association with myofiber size distribution, centralized nuclei, serum creatine kinase, and quantitative histopathology scores. Among our findings, eosinophils were prominent in the quadriceps muscles of 4-wk-old male mdx mice but no profound differences were observed in the quantitative measures of muscle damage when comparing mdx versus mdx.PHIL versus mdx.IL5tg mice, despite dramatic differences in eosinophil infiltration (CD45+CD11c-Gr1-MHC class IIloSiglecF+ eosinophils at 1.2 ± 0.34% versus <0.1% versus 20 ± 7.6% of total cells, respectively). Further evaluation revealed elevated levels of eosinophil chemoatttractants eotaxin-1 and RANTES in the muscle tissue of all three dystrophin-deficient strains; eotaxin-1 concentration in muscle correlated inversely with age. Cytokines IL-4 and IL-1R antagonist were also detected in association with eosinophils in muscle. Taken together, our findings challenge the long-held perception of eosinophils as cytotoxic in dystrophin-deficient muscle; we show clearly that eosinophil infiltration is not a driving force behind acute muscle damage in the mdx mouse strain. Ongoing studies will focus on the functional properties of eosinophils in this unique microenvironment.


Assuntos
Eosinófilos/imunologia , Distrofia Muscular de Duchenne/imunologia , Animais , Modelos Animais de Doenças , Distrofina/imunologia , Feminino , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Receptores de Interleucina-1/imunologia
19.
Methods Mol Biol ; 1899: 229-237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30649776

RESUMO

The immune infiltrate present in acutely injured or dystrophic skeletal muscle has been shown to play an important role in the process of muscle regeneration. Our work has described, for the first time, muscle regulatory T cells (Tregs), a unique population in phenotype and function capable of promoting skeletal muscle repair. Herein, we describe the methods we have optimized to study muscle Tregs, including their isolation from injured muscle, immuno-labeling for analysis/separation by flow cytometry, and measurement of their proliferation status.


Assuntos
Separação Celular/métodos , Músculo Esquelético/citologia , Regeneração/imunologia , Linfócitos T Reguladores/citologia , Humanos , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , Fenótipo , Linfócitos T Reguladores/imunologia
20.
Am J Pathol ; 189(2): 339-353, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448404

RESUMO

Patients affected by Duchenne muscular dystrophy (DMD) develop a progressive dilated cardiomyopathy characterized by inflammatory cell infiltration, necrosis, and cardiac fibrosis. Standard treatments consider the use of ß-blockers and angiotensin-converting enzyme inhibitors that are symptomatic and unspecific toward DMD disease. Medications that target DMD cardiac fibrosis are in the early stages of development. We found immunoproteasome dysregulation in affected hearts of mdx mice (murine animal model of DMD) and cardiomyocytes derived from induced pluripotent stem cells of patients with DMD. Interestingly, immunoproteasome inhibition ameliorated cardiomyopathy in mdx mice and reduced the development of cardiac fibrosis. Establishing the immunoproteasome inhibition-dependent cardioprotective role suggests the possibility of modulating the immunoproteasome as new and clinically relevant treatment to rescue dilated cardiomyopathy in patients with DMD.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Cardiomiopatias/imunologia , Cardiomiopatias/patologia , Fibrose , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA